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The spectrum of a discrete Schr6dinger operator with a hierarchically dis- 
tributed potential is studied both by a renormalization group technique and by 
numerical analysis. A suitable choice of the potential makes it possible to reduce 
the original problem to a two-dimensional map. Scaling laws for the band-edge 
energy Ebe and for the integrated density of states q are predicted together with 
the global properties of the spectrum. Different scaling regimes are obtained 
depending on a hierarchy positive parameter R: for  R < 1/2 the usual scaling 
laws for the periodic case are obtained, while for R > 1/2 the scaling behavior 
depends explicitly on R. 

KEY WORDS: Discrete Schr6dinger operators; hierarchical models; renor- 
malization group; scaling laws; Anderson localization; singular continuous 
spectrum. 

1. I N T R O D U C T I O N  

Discrete Schr6dinger operators with quasiperiodic potentials have attracted 
much attention in the last decade. (1) This interest has increased in connec- 
tion with the experimental finding of quasicrystals (2) and also because these 
structures should exhibit spectral properties between the ones of ordered 
and disordered systems (e.g., ref. 3). 

Recently, considerable attention also has been devoted to anomalous 
diffusion on hierarchical structures. (4,5~ Renormalization group methods 
yield in this case exact results for the asymptotic behaviors of the mean 
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square displacement of the autocorrelation function. Practical realizations 
of hierarchical models range from macromolecular systems to computing 
structures (for references see ref. 4); quasiperiodic heterostructures have 
also been achieved experimentally. (61 

In this paper we study the spectrum of a one-dimensional Schr6dinger 
equation in a hierarchical potential, which exhibits novel features with 
respect to periodic, quasiperiodic, and disordered cases. A similar model 
was first proposed for the continuous case by other authors (7) and it is 
known as the limit periodic potential problem; at variance with this model, 
our discrete problem takes explicitly into account also the case corre- 
sponding to diverging coefficients of the Fourier series defining the limit 
periodic potential. Other types of hierarchical potentials were studied both 
rigorously (8) and numerically. ~ 

The model we study in this paper is the following discretized 
Schr6dinger equation on a chain of 2"+  1 = N +  1 sites: 

-(Ox+l-2~txnt-Ox_l)WV(x)l/Ix=E@x; x = l  ..... N - 1  (1) 

where 

V(x)= Vm; x = 2"(2 /+  1) (2) 

with 1, m = 0 ,  1, 2,..., and with boundary conditions [~9o[ =l~tN[ =0.  A 
suitable definition of E always allows one to choose Vo = 0. In this paper 
we address two main questions: the solution of the eigenvalue problem and 
some scaling properties of the spectrum. We also discuss some features of 
the eigenfunctions in different scaling regimes. It is not an aim of this paper 
to derive rigorous results for the mathematical properties of the spectral 
measure nor to draw any conclusion on the possible existence of localized 
states (this problem is under investigation by Kunz et aL(l~ 

2. RENORMALIZATION GROUP 

The renormalization group method based on the decimation 
procedure is a powerful tool to analyze the properties of model (1). To this 
purpose, let us write Eq. (1) as follows: 

I~t x + l = O~ ( X ) ~t x - -  ~C x __ l (3) 

where 

~ ( x ) = O ~ m ~ -  V m -  E - - ~  2 ;  x =  2 m ( 2 1 - t - 1 )  (4) 
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The decimation procedure begins by eliminating the dependence on g'x 
with odd x >  1 in the set of equations (3), as far as ~or  After that the 
new set of equations becomes 

(5 )  
. . . . .  2"(2l + 1 ) ~ / x + l  = O~m [// x - -  f f /x--  l , N =  

with 

and 

g"x = O:x (6a) 

~Xm = ~m+ 10~0-- 2 , m = 0 ,  1 ..... n - -1  (6b) 

Outside the spectrum one can iterate the above procedure n - 1  times, 
reducing the original set of 2 " -  1 equations (3) to n equations 

~ 2  p+I'~-O~(p)O~(pO 0 1) ' " " ~(01)0~0 if/1 ' p = 0 ,  1 ..... n - 1  (7) 

where ~(o p) is the pth iterate defined by the recursion relation (6b). In 
particular, one has 

/ / N  . 1 
= (8 )  VI 

Let us stress that if one chooses the values of E leading to a(f ) = 0, which is 
an algebraic equation in E of degree 2 p, the (p + 1)th step of decimation is 
not allowed. However, if this occurs, Eq. (5) at the pth step can be easily 
solved for ~x, giving an eigenstate for which ~2~+m=0, with m = 0 ,  
1 ..... n - p .  Therefore, the eigenvalues of the problem are obtained by 
solving the equations 

a(o p) = 0; p = 0, 1 ..... n - 1 (9) 

which, in this form, is still too hard a task. Let us stress that the recursions 
(6) and (9), which determine the eigenvalues of our model, do not depend 
on the choice of the boundary conditions ~0 = ~ t u  = 0 (Dirichlet problem 
for the semi-infinite chain). For  instance, it is easy to prove that one can 
obtain the same results choosing periodic boundary conditions f~Po[ = rg'N[ 
and V(0)= V(N). 

Let us now show how one can construct recursively, at least in 
principle, the eigenstates as a function of the ~(o p). The simplest case occurs 
for ~o = 0, i.e., E =  2; the set of equations (3) is solved immediately to give 

@2x+l=(-1)X~]l, ~/2x = 0; x = 0 ,  1 .... (10) 
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When ~o~)=0 one has E =  I-(4+ V1)+ (8 + V~)~/2]/2 and the eigenstates 
are 

~2x_l=(-1)Ex/21 ~ , ,  1~r ~0(-- 1)x ~r [/]4x = 0; X = 0 ,  1 .... 

(11) 

where Ix]  is the integer part of x. In principle, one can go further 
iteratively to any finite order p; it is straightforward to verify that all these 
eigenfunctions, which do not depend on the chain length, are periodic 
functions of period 2 p + 1, so that they are not localized states. One can 
write explicitly the form of the family of eigenstates corresponding to the 
solutions of Eq. (9). Choosing 41 = 1, one obtains 

and in general 

02x+1 =/5(0x + 0x+l), 

1/12P(2x + l ) =  I/12P/SPl]12x + l ,  

~v- l+x  = ~,v-a_~, 

x < 2 n - 2 _ l  

x < 2  n - 2 - p -  1 

x = 0,... ,  2 " -  1 

(12) 

where, considering that all the ~x are expressed in terms of the ~o p), the 
linear operator/5 acts as follows: 

/51 = 1; _15i,',(w),',(P2).0 No . . . .  ~162176 (13) 

It is a much harder task to obtain some information about the nature of 
the 2 p eigenfunctions coming from the solution of Eq. (9) in the p --, 
limit. For instance, the fundamental energy is the lowest energy solution of 
Eq. (9) in this limit; as a consequence of what we have shown, it is also 
clear that if localized states exist, they must be looked for in this set of 
solutions. 

3. REDUCTION TO A T W O - D I M E N S I O N A L  M A P  

A suitable choice of the potential (2) allows us to reduce the infinite 
set of recursion relations (6b) to a 2D map. To this purpose, we first 
perform the following transformation: 

flm=O~rn--O~m_l; m = l ,  2 .... (14) 

~m~-~m+l/~m; r e = l ,  2 .... (15) 
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In terms of these new variables, Eqs. (6b) can be rewritten in the set 

X ' = 2  + X Y - X  2 (16a) 

Y' = -XYT~ (16b) 

7"=7,~+1; m = l ,  2 .... (16c) 

where X ( P ) = - ~ o  p~ and Y~P~=~P). In this way the recursion (16c) is 
decoupled from the others and its fixed point is 

7 * = R ;  m =  1, 2,... (17) 

Using Eqs. (14) and (15), one obtains at the fixed point (17) the following 
form for the potential: 

Vm= VI(R m -  1 ) / ( R -  1) (18) 

while recursions (16a), (16b) simplify to the two-dimensional map 

X ' = 2  + X Y - X  2 (19a) 

Y' = - X Y R  (19b) 

with initial conditions X = E - 2  and Y= V 1 , For R >  1, choosing the 
potential such that Vm/V,,,-1 ~ R as m ~ oo, the form (18) is reached after 
a transient. For instance, this occurs if V,~ ~ R m for large m. The general 
properties of the spectrum will not be affected by the initial choice of Vm 
and this justifies our studying directly the potential (18). In this case the 
map (19) contains all the information on the spectrum. For fixed p the 
determination of the eigenvalues coming from Eq. (9) amounts to looking 
for the intersections of the pth preimages of the axis X = 0 with Y = V1. All 
these preimages are branches of nonintersecting hyperbolic curves with the 
common vertical asymptote X =  0 and the set of straight lines 

Y =  X / C  (20) 

as oblique asymptotes. The angular coefficients C-~ are easily obtained 
using Eq. (19), 

Ct= 1 -.t-RCI_I, C 1 = 1; l =  1, 2 .... (21) 

whose solution is 

R t -  1 
C1 = R---s I (22) 
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It is also easy to show that all hyperbolic curves intersect the Y= 0 axis 
between X =  - 2  and X =  2. Half of these branches lie on the lhs of the axis 
X = 0 .  The branches which lie on the rhs group in classes such that a 
fraction 1/U have asymptote of type (20) with C =  Ct. The hyperbolic 
curves corresponding to the first three preimages of the axis X = 0  are 
shown in Fig. 1. Let us derive the first consequences of these results. The 
Y= V1 = 0 case corresponds to the uniform potential, whose spectrum is 
easily determined by the recursions (19) for Y=0.  In the infinite-chain 
limit the spectrum is dense on the energy interval (0, 4) (see, e.g., ref. 11). 
For  V1 > 0 the very existence of the oblique asymptotes allows for the 
classification of the eigenenergies in zeroth-order bands (ZOBs) of serial 
index l, each containing a fraction 1/2 t of states. The separation of these 
ZOBs becomes neater as V1 increases as long as R > 1. Inside these bands 
we find numerically smaller gaps, corresponding to the existence of 
hyperbolic-like asymptotes. The distance between two consecutive left 
borders of ZOBs scales as V1R t-  1 as Va and/or E increase. This implies 
that for R > 1 the gaps separating the ZOBs increase exponentially. For 

11 ] I I I 

Y 

The right branches of the first three preimages of the axis X = 0 for R = 4 (the left 
branches are obtained by the symmetry X ~ - X ,  Y ~ -Y) .  

Fig. 1. 



Spectrum of 1D Hierarchical Model 601 

R = 1 one has asymptotically equal length gaps, which is a consequence of 
Eq. (22) in the R ~ 1 limit. This case separates two distinct regimes. For  
R < 1 the limiting oblique asymptote has angular coefficient 1 - R  and, at 
variance with the R > 1 case, the spectrum is bounded also from above and 
the ZOBs accumulate near the upper band edge. Figure 2 shows the 
numerical results for the number of states with energy lower than E, 
b(E, VI), as a function of the energy in the various cases. The above 
theoretical predictions on the edges of the ZOBs are well verified 
numerically. 

4. SCALING LAWS 

The combination of the renormalization group treatment with 
standard methods allows us to discuss the scaling behavior of the density of 
states and of the Liapunov exponent for particular values of the energies. 
An immediate theoretical prediction that one can obtain on the basis of the 
existence of the ZOBs is the scaling behavior of the integrated density of 
states t/(E, V1)= ~(E, V1)2 -n for large E and R > 1. In fact, the fraction of 
states 1 - r/(Et, V1) with energy E >  E t =  2 + V 1 C l is 

1 - r/(E,, V~)=  1/2 '-1 (23) 

Using Eq. (22), one can rewrite this in terms of E only, i.e., 

_ ( E ( R _ _ -  1))  -,og 2/,og R (24) 
r/(E, V1)-~- 1 \ Vl 

From Eqs. (19) one can derive the scaling of the band-edge energy Ebe 
in the V~ ~ 0 limit. In order to obtain it, one has to compute the limit 
hyperbolic curve f(X) passing through ( X =  - 2 ,  Y= 0) (see Fig. 1) in the 
region of small Y. We note that ( - 2 ,  0) is a fixed point of the map (19) 
and that the limit curve we are looking for is an invariant set of this two- 
dimensional mapping. This amounts to solving the functional equation 
Y' = f ( X ' )  with X' and Y' given in Eqs. (19) and Y=f(X). Linearizing the 
recursions (19) around ( - 2 ,  0) and requiring that Y=f(X)~A(X+ 2) z is 
an invariant set, one finds 

flog(2R)/log 4, R > 2 
< (25) z =  ~.1, R < 2  

where A --- 2 - R for R < 2, while for R > 2, A cannot be determined by this 
method. For  R = 2 we expect logarithmic corrections to scaling. Indeed, in 
this case one finds easily 

X + 2  
f(X) = 4 log 2 (26) 

1log(X+ 2)1 
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Fig. 2. Plot of S versus E for N =  216 and V = 2 a n d ( a )  R = l / 2 ,  ( b ) R = l , ( c ) R = 3 .  
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Since the invariant set Y = f (X)  represents the limit of the left preimages of 
the axis X=0 ,  the band-edge energy is obtained solving the equation 
f (Eb~--2)=  Vt. This can be done explicitly only for V~ ~ 0  using the 
asymptotic form of f (X)  around X =  -2.  One obtains 

ED~ "" V~/z (27) 

apart from the logarithmic corrections present for R = 2. This result has 
been checked numerically for R = 1/2 and for R = 4 and it is shown in 
Fig. 3. It is also straightforward to calculate the scaling correction to 
Eq. (27), imposing that f (X)  = A(X+ 2) z [1 + B(X+ 2)'~ Following the 
previous procedure, one obtains 

where 

log R AR log(2R) 
c o = - -  B =  2 < R < 8  

log 2 ' (R - 2) log 4 '  
(27b) 

log(8R) z - 2 
~ o = - -  B =  R > 8  

log4 ' 12 ' 

A further interesting point is to see how the density of states p and the 
Liapunov exponent 2 scale with E at the band edge. Of course, the two 
functions can be in general highly singular and different from zero only on 
a very complicated set (for instance, Fig. 2 suggests that this is the case). 
Therefore our results for these scaling laws apply to these functions as 
averaged over a suitable infinitesimal interval of energy. 

A standard method to obtain p for the eigenvalue problem (3) 
amounts to studying the associated equation for the Green's function 
(resolvent) Pxo,x, 

e(E, Y; x) Pxo,~ = e~o,x+l +Pxo,x-1 +{)xo,x (28) 

which is well defined at least for E <  Ebe and where 6~0,~ is the Kronecker 
delta function. The analytic continuation to E>Ebe of the solution 
Pxo,x(E, Y) is related to p and to the Liapunov exponent 2(E, Y) through 
the equations 

1 1 
p = l i r a  ~ T r  6 ( H -  E) =-~ Im P(E+ iO +, Y) (29) 

- - =  Re P(E + iO + ) (30) 
~E 
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where P(E, Y)= limN~ oo (l/N)~x0 Px0,x0(E) ' This problem can be mapped 
into a statistical problem where Pxo,x is the two-point correlation function 
of a Gaussian model with reduced Hamiltonian 

H =  Z - ~  q ~ -  Z r ~ (31) 
x X 

a )  -1 .6 I i i 

e,, 

l_m_l 

0 

(b) -Io0 

Fig. 3. 
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ioe.~ 

fi 
Pxo,x = <~Oxo~~ = Z N  1 1.1 &o. e x p ( - g )  <O.o<O. (32) 

- - ~  x = l  

with the partition function ZN given as usual by 
+ ~  N 

ZN = f I-I dg~ exp( - H) 
--oo X = I  

Recalling the definition of a(x) given in Eq. (4), one obtains immediately 
the average over sites of Pxo.x: 

1 
P(E,  V ) = 2  l i m  ~ - ~ l o g  ZN(E,  Y) (33) 

A renormalization group procedure based on the decimation of odd 
sites (11'12) gives for the model (31) again the recursion equations (19) 
together with the scaling of the "free energy density" F =  
limN~ ~ ( l /N) log Z N 

F(E, Y) = �88 log(2~) + �89 F(E' ,  Y ' )  (34) 

The fixed points of (19) are 

u = ( X * ,  Y*) = ( - 2 ,  0), 

( 1 ( 2 R 2 + R - 1 ) )  
v = ( x * ,  Y*)  = R '  R 

w = (Xw*, Yw*) = (I ,  0) 

As we shall see, only u and v are relevant for the scaling at the band edge. 
Looking at Table I, one realizes that for R <  1/2, u has a domain of 

Table I. Eigenvalues and Eigenvectors of the Jacobian Map (19) 
at the Fixed Points u and v a 

Fixed point Eigenvalues Eigenvectors 

u 2+=4 (1,0) 

~4- = 2R (1, 2 - R) 

2;- S -  (S 2-  8R) 1/2 1, -- �9 
2R 

aS=2R2+2R+I.  

822/52/'3-4-6 
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attraction which is an invariant line intersecting u with slope ( 2 - R ) .  At 
R = 1/2, v crosses u and for R > 1/2 it enters the positive Y plane, where it 
acquires a domain of attraction which is an invariant line. It is tempting to 
conjecture that this invariant line joins together u and v and is the same 
invariant line Y=f(X)  we have been speaking of above. We have direct 
numerical evidence that this is the case for different relevant values of R. 
Furthermore, an immediate consequence should be that for V1 = Y* in 
Eq. (18), the value of Ebe should be given by Ebe=2+X*=2-1 /R  for 
R > 1/2. A high-precision estimate of Ebe for this value of V, gives a perfect 
agreement with our prediction, making us confident that indeed the 
conjecture is plausible. 

Let us come back to Eq. (34), which implies that 

VF(E, Y)= �89 Y)VF(E', r') (35) 
where 

(OE'/(3E (3 Y'/(3E~ 
T(E, Y)=\(3E'/(3Y 8Y'/(3Y] (36) 

If the above conjecture holds, starting with Y= V, and E =  Ebe ( V1)- g, the 
resulting renormalization group trajectory will spend an increasing "time" 
near the fixed point u or v for R < 1/2 and R > 1/2, respectively, as e 
approaches zero. Thus, we can write 

(E (n), YI")) ~ ,s  W (37) 

where }~max is the maximum eigenvalue in u and v for R < 1/2 and R > 1/2, 
respectively, and w the corresponding eigenvector (see Table I). Equation 
(37) will hold for no(no ,  n(e)), where n o is fixed and depends on the 
transient (i.e., on V1), while n(e)~ oo as e ~ 0. In this range of values of n 
one has 

P(E, Y) = (1, 0) VF(E, Y)~ g(~,~ax) (38) 

where g is a suitable function. Taking n(e) such that c2~])x = eo '~ 1 with eo 
fixed, Eq. (38) implies 

P(Eb e _ ~, y) ~ e(~ - 1) (39) 

with 

log 2 = ~'1/2, R ~< 1/2 (40) 
~P = log ~'max [ log 2/log 2 if, R >~ 1/2 
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The analytic continuation in Eq. (29) gives the same scaling of Eq. (39) for 
the density of states, while for the integrated density of states r/(E, Y) we 
have 

r / (Eb e -[- E, y )  -,~ 8q~ (41) 

and for the Liapunov exponent 

,~(Ebe q-/2, Y) ,,~ ~3 ~ c o s ( ~ p )  + c o n s t  (42) 

Equation (41) has been checked numerically for different relevant values of 
R, showing a perfect agreement with the theoretical prediction. Even if 
these results are interesting for the "averaged" functions and can be verified 
numerically, it is important to remark that no conclusions can be drawn on 
the value of the Liapunov exponent in the spectrum. 

5. C O N C L U S I O N S  

In this paper we have obtained rigorous closed expressions for the 
eigenvalue problem of a hierarchical model defined on a semi-infinite chain 
with Dirichlet boundary conditions. The eigenvalues accumulate in a very 
rich Cantor set structure; one can prove that the essential spectrum of the 
semi-infinite chain is the same as for the infinite one. We have also derived 
the scaling law of the lowest band-edge energy in terms of the potential 
amplitude V1. The scaling exponents change at R = 2 and at R = 8. Similar 
scaling laws may exist at any band edge in the spectrum. Scaling laws for 
the density of states and for the Liapunov exponent change at R =  1/2. 
Analogous changes for other properties of the spectrum could be expected 
for any value of R which is a power of 2. 

Let us stress that the renormalization group method cannot allow one 
to draw strict conclusions on the value of the Liapunov exponent 2, even at 
E=Ebe, although we have strong numerical evidence that 2 = 0  in the 
spectrum. The study of the properties of the eigenstates must be performed 
by other methods. Bellissard (1) has recently proven that for R > 2  this 
model has a "singular" continuous spectrum. Other authors (1~ have 
reached analogous conclusions by using resolvent techniques. The effective 
calculation of the singular wave functions remains an open problem. 

For R < 1 we have numerical evidence that the Lebesgue measure of 
the spectrum is positive and therefore we conjecture that the spectrum has 
an absolutely continuous component. For a similar model which shows an 
absolutely continuous component of the spectrum see ref. 13. 

Finally, we think that important hints may come from a more detailed 
analysis of the dynamical system (19), which we have associated with the 
properties of the spectrum. 
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